Interspecific variation in Rx1 expression controls opsin expression and causes visual system diversity in African cichlid fishes.
نویسندگان
چکیده
The mechanisms underlying natural phenotypic diversity are key to understanding evolution and speciation. Cichlid fishes are among the most speciose vertebrates and an ideal model for identifying genes controlling species differences. Cichlids have diverse visual sensitivities that result from species expressing subsets of seven cichlid cone opsin genes. We previously identified a quantitative trait locus (QTL) that tunes visual sensitivity by varying SWS2A (short wavelength sensitive 2A) opsin expression in a genetic cross between two Lake Malawi cichlid species. Here, we identify Rx1 (retinal and anterior neural fold homeobox) as the causative gene for the QTL using fine mapping and RNAseq in retinal transcriptomes. Rx1 is differentially expressed between the parental species and correlated with SWS2A expression in the F2 progeny. Expression of Rx1 and SWS2A is also correlated in a panel of 16 Lake Malawi cichlid species. Association mapping in this panel identified a 413-bp deletion located 2.5-kb upstream of the Rx1 translation start site that is correlated with decreased Rx1 expression. This deletion explains 62% of the variance in SWS2A expression across 53 cichlid species in 29 genera. The deletion occurs in both the sand and rock-dwelling cichlid clades, suggesting that it is an ancestral polymorphism. Our finding supports the hypothesis that mixing and matching of ancestral polymorphisms can explain the diversity of present day cichlid phenotypes.
منابع مشابه
Parallel evolution of opsin gene expression in African cichlid fishes.
Phenotypic evolution may occur either through alterations to the structure of protein-coding genes or their expression. Evidence for which of these two mechanisms more commonly contribute to the evolution of a phenotype can be garnered from examples of parallel and convergent evolution. The visual system of East African cichlid fishes is an excellent system with which to address this question. ...
متن کاملCichlid fish visual systems: mechanisms of spectral tuning.
Hundreds of species of cichlid fishes have evolved in the Great Lakes of Africa. These colorful fishes are known for their ecological diversity. Here, we discuss the diversity of their visual systems. Cichlids have seven unique cone opsin genes, which produce visual pigments sensitive from the ultraviolet to the red end of the spectrum. Different species typically express three visual pigments ...
متن کاملRapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes.
Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions du...
متن کاملGenetic basis of differential opsin gene expression in cichlid fishes.
Visual sensitivity can be tuned by differential expression of opsin genes. Among African cichlid fishes, seven cone opsin genes are expressed in different combinations to produce diverse visual sensitivities. To determine the genetic architecture controlling these adaptive differences, we analysed genetic crosses between species expressing different complements of opsin genes. Quantitative gene...
متن کاملCone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression.
Spectral tuning of visual pigments is typically accomplished through changes in opsin amino acid sequence. Within a given opsin class, changes at a few key sites control wavelength specificity. To investigate known differences in the visual pigment spectral sensitivity of the Lake Malawi cichlids, Metriaclima zebra (368, 488, and 533 nm) and Dimidiochromis compressiceps (447, 536, and 569 nm), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 31 9 شماره
صفحات -
تاریخ انتشار 2014